Q.
Let f be a one-to-one continuous function such that f(2)=3 and f(5)=7. Given 2∫5f(x)dx=17, then the value of the definite integral 3∫7f−1(x)dx equals
y=f(x)⇒x=f−1(y) and dy=f′(x)dx
now I=3∫7f−1(x)dx=3∫7f−1(y)dy=2∫5xf′(x)dx;( when y=3 then x=2 and y=7 then x=5 )
hence I=2∫5xf′(x)dx. Integrating by parts gives,
I=xf(x)∣25−2∫5f(x)dxI=5⋅7−2⋅3−17=35−6−17=12