Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f be a differentiable function satisfying f prime( x )=2 f ( x )+10 and f (0)=0 then the number of roots of the equation f ( x )+5 sec 2 x =0 in (0,2 π) is
Q. Let
f
be a differentiable function satisfying
f
′
(
x
)
=
2
f
(
x
)
+
10
and
f
(
0
)
=
0
then the number of roots of the equation
f
(
x
)
+
5
sec
2
x
=
0
in
(
0
,
2
π
)
is
285
116
Differential Equations
Report Error
A
0
B
1
C
2
D
3
Solution:
Given,
f
′
(
x
)
=
2
(
f
(
x
)
+
5
)
or
y
+
5
d
y
=
2
d
x
. On integrating, we get
ln
∣
(
y
+
5
)
∣
=
2
x
+
c
, if
x
=
0
;
y
=
0
⇒
c
=
ln
5
∴
ln
(
5
y
+
5
)
=
2
x
⇒
y
+
5
=
5
e
2
x
⇒
y
=
5
e
2
x
−
5
⇒
f
(
x
)
=
5
(
e
2
x
−
1
)
Now,
f
(
x
)
+
5
sec
2
x
=
5
(
e
2
x
+
tan
2
x
)
=
0
So, no solution exist
(
0
,
2
π
)