At right hand vicinity of x=0 given equation does not satisfy ∵ LHS =1−∫1t2f(t)dt=0, RHS =x→0+lim(sin3x+cosx)=1
LHS = RHS hence data given in question is wrong hence BONUS
Correct data should have been cosx∫1t2f(t)dt=sin3x+cosx−1
Calculation for option
differentiating both sides −cos2xf(cosx)⋅(−sinx)=3sin2x⋅cosx−sinx ⇒f(cosx)=3tanx−sec2x ⇒f′(cosx)(−sinx)=3sec2x−2sec2xtanx ⇒f′(cosx)cosx=cos2x2−sinx⋅cosx3
When cosx=31;sinx=32 ∴f′(31)31=6−29