Q.
Let f[1,∞)→[2,∞) be a differentiable function such that f(1)=31. If 6∫1xf(t)dt=3xf(x)−(x)3 for all x≥1, then the value of 3f(2) is
2250
203
NTA AbhyasNTA Abhyas 2020Differential Equations
Report Error
Answer: 8
Solution:
Given, f(1)=31 and 6∫1xf(t)dt=3xf(x)−(x)3 for all x≥1
Using Newton- Leibnitz formula.
Differentiating both sides, ⇒6f(x)⋅1−0=3f(x)+3x(f)′(x)−3(x)2 ⇒3x(f)′(x)−3f(x)=3(x)2 ⇒(f)′(x)−x1f(x)=x ⇒(x)2x(f)′(x)−f(x)=1 ⇒dxd{xf(x)}=1
Integrating both sides, ⇒xf(x)=x+C[∵f(1)=31] 31=1+C ⇒C=−32 f(x)=(x)2−32x ⇒f(2)=4−34=38 ∴3f(2)=8