It is given that, (f′(x))4=16(f(x))2,∀x∈(−1,1) ⇒(f′(x))2=±4f(x) Case I
If f(x)≥0∀x∈(−1,1)
Then, f′(x)=±2f(x) ⇒f(x)f′(x)=±2 ⇒2f(x)=±2x, [∵f(0)=0] ⇒f(x)=x2∀x∈(−1,1) Case II
If f(x)<0∀x∈(−1,1)
Then, f′(x)=±2−f(x) ∴f(x)=−x2∀x∈(−1,1) ∴f1(x)=⎩⎨⎧x2,x2, 0≤x<1 −1<x<0 f2(x)=⎩⎨⎧x2,−x2, 0≤x<1 −1<x<0 f3(x)=⎩⎨⎧−x2,x2, 0≤x<1 −1<x<0 f4(x)=⎩⎨⎧−x2,−x2, 0≤x<1 −1<x<0 f5(x)=0 f6(x)=⎩⎨⎧0,x2, 0≤x<1 −1<x<0 ,… and so on
Hence, there are more than 4 functions possible