f:(0,∞)⟶R f′(x)=2−xf(x) ∀x∈(0,∞) dxdy=2−xy ⇒dxdy+xy=2
I. F .=e∫x1dx=eℓnx=x ⇒xy=∫2xdx ⇒xy=x2+c ⇒y=x+xc ∴f(x)=x+xc f(1)=1+c=1 ∴c=0 f′(x)=1−x2c f′(x1)=1−cx2 x→0+limf′(x1)=x→0+lim(1−cx2)=1 x→0+limxf(x1)=x→0+limx(x1+cx) =x→0+lim(1+cx2)=1 x→0+limx2f′(x)=x→0+lim(x2−c)=−c=0 f(x)=x+xc x→0+limf(x)→±∞
So f(x) is not bounded
So ∣f(x)∣≤2 not possible