Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let e be the eccentricity of hyperbola and f ( e ) be the eccentricity of its conjugate hyperbola then ∫ limits1√2(f(e)+f(f(e))) d e is equal to
Q. Let
e
be the eccentricity of hyperbola and
f
(
e
)
be the eccentricity of its conjugate hyperbola then
1
∫
2
(
f
(
e
)
+
f
(
f
(
e
)))
d
e
is equal to
2421
95
Conic Sections
Report Error
A
3
B
1
C
2
3
D
2
Solution:
Let eccentricity of conjugate hyperbola be e'
∴
e
2
1
+
e
′2
1
=
1
⇒
e
′2
1
=
1
−
e
2
1
⇒
e
′
=
e
2
−
1
e
∴
f
(
e
)
=
e
2
−
1
e
and
f
(
f
(
e
))
=
f
2
(
e
)
−
1
f
(
e
)
=
e
2
−
1
e
2
−
1
e
2
−
1
e
=
e
∴
Given integral
=
1
∫
2
(
e
2
−
1
e
+
e
)
d
e
=
(
e
2
−
1
+
2
e
2
)
1
2
=
(
1
+
1
)
−
(
0
+
2
1
)
=
2
3