Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let e1 and e2 are the eccentricities of the ellipse (x2/18)+(y2/4)=1 and the hyperbola (x2/9)-(y2/4)=1 respectively. If (e1 , e2) is a point on the ellipse 15x2+3y2=k , then the value of k is equal to
Q. Let
e
1
and
e
2
are the eccentricities of the ellipse
18
x
2
+
4
y
2
=
1
and the hyperbola
9
x
2
−
4
y
2
=
1
respectively. If
(
e
1
,
e
2
)
is a point on the ellipse
15
x
2
+
3
y
2
=
k
, then the value of
k
is equal to
2154
257
NTA Abhyas
NTA Abhyas 2020
Report Error
A
16
B
17
C
15
D
14
Solution:
e
1
=
1
−
18
4
=
9
7
=
3
7
e
1
=
1
+
9
4
=
9
13
=
3
13
Also,
15
e
1
2
+
3
e
2
2
=
k
⇒
k
=
15
(
9
7
)
+
3
(
9
13
)
∴
k
=
16