Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Δ(x)=| cos 2 x cos x sin x - sin x cos x sin x sin 2 x cos x sin x - cos x 0| then ∫ limits0π / 2[Δ(x)+Δ prime(x)] d x equals
Q. Let
Δ
(
x
)
=
∣
∣
cos
2
x
cos
x
sin
x
sin
x
cos
x
sin
x
sin
2
x
−
cos
x
−
sin
x
cos
x
0
∣
∣
then
0
∫
π
/2
[
Δ
(
x
)
+
Δ
′
(
x
)
]
d
x
equals
32
125
Determinants
Report Error
A
π
/3
B
π
/2
C
2
π
D
3
π
/2
Solution:
Applying
C
1
→
C
1
−
sin
x
C
3
and
C
2
→
C
2
+
cos
x
C
3
, we get
Δ
(
x
)
=
∣
∣
1
0
sin
x
0
1
−
cos
x
−
sin
x
cos
x
0
<
b
r
/
>
∣
∣
Applying
R
3
→
R
3
−
sin
x
R
1
+
cos
x
R
2
, we get
Δ
(
x
)
=
∣
∣
1
0
0
0
1
0
−
sin
x
cos
x
cos
2
x
+
sin
2
x
∣
∣
=
1
⇒
Δ
′
(
x
)
=
0
Thus,
0
∫
π
/2
[
Δ
(
x
)
+
Δ
′
(
x
)
]
d
x
=
0
∫
π
/2
d
x
=
2
π
.