Using C1→C1+C2+C3, we get Δ(x)=f(x)∣∣1112cos4x3+2cos4x2cos4xsin22xsin22x3+sin22x∣∣
where f(x)=3+2sin4x+2cos4x+sin22x =3+2(sin4x+cos4x+2sin2xcos2x) =3+2(cos2x+sin2x)2=5
Applying C2→C2−(2cos4x)C1 and C3→C3−(sin22x)C1, we get Δ(x)=5∣∣111030003<br/>∣∣=45
Thus, −π/2∫π/2xΔ(x)dx=45−π/2∫π/2xdx=0