Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Δ=| sin θ cos φ sin θ sin φ cos θ cos θ cos φ cos θ sin φ - sin θ - sin θ sin φ sin θ cos φ 0|, then
Q. Let
Δ
=
∣
∣
sin
θ
cos
ϕ
cos
θ
cos
ϕ
−
sin
θ
sin
ϕ
sin
θ
sin
ϕ
cos
θ
sin
ϕ
sin
θ
cos
ϕ
cos
θ
−
sin
θ
0
∣
∣
, then
1929
216
Determinants
Report Error
A
Δ
is independent of
θ
B
d
θ
d
Δ
]
θ
=
π
/2
=
0
C
Δ
is a constant
D
None of these
Solution:
Applying
C
1
→
C
1
−
(
cot
ϕ
)
C
2
, we get
Δ
=
∣
∣
0
0
−
sin
θ
/
sin
ϕ
sin
θ
sin
ϕ
cos
θ
sin
ϕ
sin
θ
cos
ϕ
cos
θ
−
sin
θ
0
∣
∣
On expanding along
C
1
, we get
Δ
=
−
s
i
n
ϕ
s
i
n
θ
[
sin
ϕ
sin
2
θ
−
cos
2
θ
sin
ϕ
]
=
sin
θ
, This is independent of
ϕ
.
Also,
d
θ
d
Δ
=
cos
θ
⇒
d
θ
d
Δ
]
θ
=
π
/2
=
cos
(
2
π
)
=
0