Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Δ= |1&1&1 1&-1-w2&w2 1&w&w4|, where w ≠ 1 is a complex number such that w3 = 1. Then Δ equals
Q. Let
Δ
=
∣
∣
1
1
1
1
−
1
−
w
2
w
1
w
2
w
4
∣
∣
, where
w
=
1
is a complex number such that
w
3
=
1
. Then
Δ
equals
2284
203
KEAM
KEAM 2017
Determinants
Report Error
A
3
w
+
w
2
0%
B
3
w
2
100%
C
3
(
w
=
w
2
)
0%
D
−
3
w
2
0%
E
3
w
2
+
1
0%
Solution:
We have,
Δ
=
∣
∣
1
1
1
1
−
1
−
w
2
w
1
w
2
w
4
∣
∣
=
∣
∣
1
1
1
1
w
w
1
w
2
w
∣
∣
[
∵
1
+
w
+
w
2
=
0
,
w
3
=
1
]
=
1
(
w
2
−
w
3
)
−
1
(
w
−
w
2
)
+
1
(
w
−
w
)
=
w
2
−
1
−
w
+
w
2
=
2
w
2
−
(
1
+
w
)
=
2
w
2
−
(
−
w
2
)
=
3
w
2