Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ( d / dx )( x 2 y )= x -1 where x ≠ 0 and y =0 when x =1. Find the smallest natural x for which ( dy / dx ) is positive.
Q. Let
d
x
d
(
x
2
y
)
=
x
−
1
where
x
=
0
and
y
=
0
when
x
=
1
. Find the smallest natural
x
for which
d
x
d
y
is positive.
182
115
Integrals
Report Error
Answer:
2
Solution:
d
x
d
(
x
2
y
)
=
x
−
1
Integrating both sides
x
2
y
=
∫
(
x
−
1
)
d
x
=
2
x
2
−
x
+
C
If
x
=
1
,
y
=
0
∴
0
=
2
1
−
1
+
C
⇒
C
=
2
1
x
2
y
=
2
x
2
−
x
−
2
1
y
=
2
1
−
x
1
+
2
x
2
1
d
x
d
y
=
x
2
1
−
x
3
1
=
x
3
x
−
1
∴
x
3
x
−
1
>
0
∴
x
∈
(
−
∞
,
0
)
∪
(
1
,
∞
)]