Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Cn=∫ limits(1/n+1)(1/n) ( tan -1(n x)/ sin -1(n x)) d x then operatornameLimn arrow ∞ n2 ⋅ Cn equals
Q. Let
C
n
=
n
+
1
1
∫
n
1
s
i
n
−
1
(
n
x
)
t
a
n
−
1
(
n
x
)
d
x
then
Lim
n
→
∞
n
2
⋅
C
n
equals
253
111
Integrals
Report Error
A
1
B
0
C
-1
D
2
1
Solution:
C
n
=
n
+
1
1
∫
n
1
s
i
n
−
1
(
n
x
)
t
a
n
−
1
(
n
x
)
d
x
(put nx
=
t
)
⇒
C
n
=
n
1
n
+
1
n
∫
1
s
i
n
−
1
(
t
)
t
a
n
−
1
(
t
)
d
t
L
=
n
→
∞
Lim
n
2
⋅
C
n
=
n
→
∞
Lim
n
⋅
n
+
1
n
∫
1
s
i
n
−
1
t
t
a
n
−
1
t
d
t
(
∞
×
0
)
;
L
=
n
1
s
i
n
−
1
t
t
a
n
−
1
t
d
t
(
0
0
)
applying Leibnitz rule
L
=
n
→
∞
Lim
−
n
2
1
0
−
s
i
n
−
1
n
+
1
n
t
a
n
−
1
n
+
1
n
(
(
n
+
1
)
2
1
)
=
4
π
⋅
π
2
=
2
1