Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α ≠ β satisfy α2+1=6 α, β2+1=6 β. Then, the quadratic equation whose roots are (α/α+1), (β/β+1), is
Q. Let
α
=
β
satisfy
α
2
+
1
=
6
α
,
β
2
+
1
=
6
β
.
Then, the quadratic equation whose roots are
α
+
1
α
,
β
+
1
β
, is
1574
225
TS EAMCET 2015
Report Error
A
8
x
2
+
8
x
+
1
=
0
B
8
x
2
−
8
x
−
1
=
0
C
8
x
2
−
8
x
+
1
=
0
D
8
x
2
+
8
x
−
1
=
0
Solution:
We have,
α
2
+
1
=
6
α
and
β
2
+
1
=
6
β
Since,
α
,
β
are the roots of the equation
x
2
−
6
x
+
1
=
0
∴
x
=
α
+
1
α
⇒
α
=
1
−
X
X
Hence, required quadratic equation whose roots
are
α
+
1
α
,
β
+
1
β
, is
(
1
−
x
x
)
2
−
6
(
1
−
x
x
)
+
1
=
0
⇒
x
2
−
6
x
(
1
−
x
)
+
1
(
1
−
x
)
2
=
0
⇒
x
2
−
6
x
+
6
x
2
+
1
+
x
2
−
2
x
=
0
⇒
8
x
2
−
8
x
+
1
=
0