Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α, β, γ are the roots of the cubic equation a0 x3+3 a1 x2+3 a2 x+a3=0 (a0 ≠ 0). Then the value of (α-β)2+(β-γ)2+(γ-α)2 equals
Q. Let
α
,
β
,
γ
are the roots of the cubic equation
a
0
x
3
+
3
a
1
x
2
+
3
a
2
x
+
a
3
=
0
(
a
0
=
0
)
. Then the value of
(
α
−
β
)
2
+
(
β
−
γ
)
2
+
(
γ
−
α
)
2
equals
281
114
Complex Numbers and Quadratic Equations
Report Error
A
a
0
2
18
(
a
2
2
−
a
0
a
1
)
B
a
0
2
18
(
a
2
2
+
a
0
a
1
)
C
a
0
2
18
(
a
0
2
−
a
1
a
2
)
D
a
0
2
18
(
a
1
2
−
a
0
a
2
)
Solution:
Σ
α
=
α
+
β
+
γ
=
a
0
−
3
a
1
Σ
α
β
=
α
β
+
β
γ
+
γ
α
=
a
0
3
a
2
Now,
(
α
−
β
)
2
+
(
β
−
γ
)
2
+
(
γ
−
α
)
2
=
2
(
α
2
+
β
2
+
γ
2
)
−
2Σ
α
β
=
2
(
(
α
+
β
+
γ
)
2
−
2Σ
α
β
)
−
2Σ
α
β
=
2
(
α
+
β
+
γ
)
2
−
6Σ
α
β
=
2
(
a
0
−
3
a
1
)
2
−
6
(
a
0
3
a
2
)
=
a
0
2
18
a
1
2
−
a
0
18
a
2
=
a
0
2
18
(
a
1
2
−
a
0
a
2
)