Q.
Let α,β denote the cube roots of unity other than 1 and α=β. Let n=0∑302(−1)n(βα)n. Then the value of s is
1574
191
WBJEEWBJEE 2014Complex Numbers and Quadratic Equations
Report Error
Solution:
Case I Let α=ω and β=ω2 ∴S=n=0∑302(−1)n(ω2ω)n =n=0∑302(−1)n(ω2)n =1−ω2+ω4−ω6+ω8−ω10+ω12+…+ω600−ω602+ω604 =1−ω2+ω−1+ω2−ω+1+…+1−ω2+ω =0+…+1−ω2+ω =−ω2−ω2=−2ω2 [∵1+ω+ω2=0]
Case II Let α=ω2 and β=ω ∴S=n=0∑302(−1)n(ωω2)n =n=0∑302(−1)n(ω3ω4)n =n=0∑302(−1)n(ω) =1−ω+ω2−ω3+ω4−ω5+ω6−…+ω300−ω301+ω302 =1−ω+ω2−1+ω−ω2+1−…+1−ω+ω2 =0+…+1+ω2−ω =−ω−ω=−2ω