Q.
Let α,β be real roots of the quadratic equation x2+kx+(k2+2k−4)=0, then the maximum value of (α2+β2) is equal to
2036
98
Complex Numbers and Quadratic Equations
Report Error
Solution:
For real roots D≥0 k2−4(k2+2k−4)≥0⇒−3k2−8k+16≥0 ⇒3k2+8k−16≤0⇒3k2+12k−4k−16≤0 ⇒3k(k+4)−4(k+4)≤0⇒k∈[−4,34]
Also, α2+β2=(α+β)2−2αβ=k2−2(k2+2k−4)=−k2−4k+8=12−(k+2)2
Maximum value is 12 when k=−2.