Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α and β be the roots of the equation x2 + x + 1 = 0. Then for y ≠ 0 in R, | y+1 α β α y-β 1 β 1 y+α | is equal to
Q. Let
α
and
β
be the roots of the equation
x
2
+
x
+
1
=
0
. Then for y
=
0 in R,
∣
∣
y
+
1
α
β
α
y
−
β
1
β
1
y
+
α
∣
∣
is equal to
5343
242
JEE Main
JEE Main 2019
Determinants
Report Error
A
y
3
69%
B
y
3
−
1
14%
C
y
(
y
2
−
1
)
10%
D
y
(
y
2
−
3
)
7%
Solution:
Roots of the equation
x
2
+
x
+
1
=
0
are
α
=
ω
and
β
=
ω
2
where
ω
,
ω
2
are complex cube roots of unity
∴
δ
=
∣
∣
y
+
1
ω
ω
2
ω
y
+
ω
2
1
ω
2
1
y
+
ω
∣
∣
R
1
→
R
1
+
R
2
+
R
3
⇒
Δ
=
y
∣
∣
1
ω
ω
2
1
y
+
ω
2
1
1
1
y
+
ω
∣
∣
Expanding along
R
1
,
we get
Δ
=
y
,
y
2
⇒
D
=
y
3