Given, α and β are roots of px2+qx+r=0,p=0. ∴α+β=p−q,αβ=pr....(i)
Since, p,q and r are in AP. ∴2q=p+r......(ii)
Also, α1+β1=4⇒αβα+β=4 ⇒α+β=4αβ⇒p−q=p4r [from Eq. (i)] ⇒q=−4r
On putting the value of q in Eq. (ii), we get ⇒2(−4r)=p+r⇒p=−9r
Now, α+β=p−q=p4r=−9r4r=−94
and αβ=pr=−9rr=−91 ∴(α−β)2=(α+β)2−4αβ=8116+94=8116+36 ⇒(α−β)2=8152 ⇒∣α−β∣=9213