Given equation is x2+x+1=0. Since, α,α2 are the roots of the equation. ∴α+α2=−1…(i)
and α3=1…(ii)
Now, for the equation of roots are α31 and α62. α31+α62=α31(1+α31) ⇒α31+α62=α30α(1+α30⋅α) ⇒α31+α62=(α3)10⋅{1+α30⋅α} ⇒α31+α62=(α3)10⋅α{1+(α3)10⋅α} ⇒α31+α62=α(1+α) [using Eq. (ii)] ⇒α31+α62=−1 [using Eq. (i)]
Again α31⋅α62=α93 =(α3)31=1 ∴ Required equation is x2−(α31+α62)x+α31⋅α62=0 ⇒x2+x+1=0