Q.
Let
α1,α2 and β1,β2 be the roots of ax2+bx+c=0 and px2+qx+r=0 respectively. If the system of equations α1y+α2z=0 and β1y+β2z=0 has a non-trivial solution, then
Since α1,α2 and β1,β2 are the roots of ax2+bx+c=0 and px2+qx+r=0 respectively, therefore α1+α2=a−b,α1a2=ac ....(1)
and β1+β2=p−q,β1β2=pr .....(2)
Since the given system of equation has a non-trivial solution ∴∣∣α1β1α2β2∣∣=0α1β2−α2β1=0
or β1α1=β2α2=β1+β2α1+α2=β1β2α1α2 ⇒qapb=rapc⇒q2b2=prac