Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a n n =0∞ be a sequence such that a0=a1=0 and a n +2=3 a n +1-2 a n +1, ∀ n ≥ 0. Then a25 a23-2 a25 a22-2 a23 a24+4 a22 a24 is equal to:
Q. Let
{
a
n
}
n
=
0
∞
be a sequence such that
a
0
=
a
1
=
0
and
a
n
+
2
=
3
a
n
+
1
−
2
a
n
+
1
,
∀
n
≥
0
. Then
a
25
a
23
−
2
a
25
a
22
−
2
a
23
a
24
+
4
a
22
a
24
is equal to:
1262
2
JEE Main
JEE Main 2022
Sequences and Series
Report Error
A
483
0%
B
528
100%
C
575
0%
D
624
0%
Solution:
a
0
=
0
,
a
1
=
0
a
n
+
2
=
3
a
n
+
1
−
2
a
n
+
1
:
n
≥
0
a
n
+
2
−
a
n
+
1
=
2
(
a
n
+
1
−
a
n
)
+
1
n
=
0
a
2
−
a
1
=
2
(
a
1
−
a
0
)
+
1
n
=
1
a
3
−
a
2
=
2
(
a
2
−
a
1
)
+
1
n
=
2
a
4
−
a
3
=
2
(
a
3
−
a
2
)
+
1
n
=
n
a
n
+
2
−
a
n
+
1
=
2
(
a
n
+
1
−
a
n
)
+
1
(
a
n
+
2
−
a
1
)
−
2
(
a
n
+
1
−
a
0
)
−
(
n
+
1
)
=
0
a
n
+
2
=
2
a
n
+
1
+
(
n
+
1
)
n
→
n
−
2
a
n
−
2
a
n
−
1
=
n
−
1
Now
a
25
a
23
−
2
a
25
a
22
−
2
a
23
a
24
+
4
a
22
a
24
=
(
a
25
−
2
a
24
)
(
a
23
−
2
a
22
)
=
(
24
)
(
22
)
=
528