Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let an=10n / n ! for n ≥ 1. Then an take the greatest value when n equals
Q. Let
a
n
=
1
0
n
/
n
! for
n
≥
1
. Then
a
n
take the greatest value when
n
equals
88
153
Permutations and Combinations
Report Error
A
20
B
18
C
6
D
9
Solution:
We have
a
n
+
1
a
n
=
n
!
1
0
n
×
1
0
n
+
1
(
n
+
1
)!
=
10
n
+
1
.
Note that
a
2
a
1
<
1
,
a
3
a
2
<
1
,
a
4
a
3
<
1
,
a
5
a
4
<
1
,
…
a
9
a
8
<
1
,
a
10
a
9
=
1
,
a
11
a
10
>
1
,
a
12
a
11
>
1
,
…
Thus,
a
1
<
a
2
<
a
3
<
…
<
a
9
=
a
10
>
a
11
>
a
12
∴
a
n
is greatest if
n
=
9
or 10 .