Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a = min x2+2x+3: x ∈ R and b= lim limitsθ → 0 (1-cos θ/θ2). Then ∑ limitsnr - 0 arbn-r is
Q. Let a = min
{
x
2
+
2
x
+
3
:
x
∈
R
}
and
b
=
θ
→
0
lim
θ
2
1
−
cos
θ
. Then
r
−
0
∑
n
a
r
b
n
−
r
is
2417
199
WBJEE
WBJEE 2019
Report Error
A
3.
2
n
2
n
+
1
−
1
B
3.
2
n
2
n
+
1
+
1
C
3.
2
n
4
n
+
1
−
1
D
2
1
(
2
n
−
1
)
Solution:
a
=
min
(
x
+
1
)
2
+
2
=
2
θ
→
0
lim
4
(
2
θ
)
2
2
s
i
n
2
2
θ
=
2
1
,
a
r
b
n
−
r
=
2
n
−
r
2
r
=
2
2
r
−
n
=
2
n
4
r
,
r
−
0
∑
n
a
r
.
b
n
−
r
=
2
n
1
r
−
0
∑
n
4
r
=
2
n
1
(
1
−
4
1
−
4
n
+
1
)
=
3
×
2
n
4
n
+
1
−
1