[23123][abbc]=[1α2β]
Now ac−b2=2 and 2a+b=1
and 2b+c=2
solving all these above equations we get 21−b×(12−2b)−b2=2 ⇒(1−b)2−b2=2 ⇒1−2b=2 ⇒b=−21 and a=43 and c=3
Hence α=3a+23b=49−43=23
and β=3b+23c=−23+29=3
also s=a+c=415 ∴α2βs=4×493×15=5