Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A be a 3 × 3 invertible matrix. If mid adj (24 A) mid= operatornameadj(3 operatornameadj(2 A )) mid, then | A |2 is equal to :
Q. Let
A
be a
3
×
3
invertible matrix. If
∣
adj
(
24
A
)
∣=
adj
(
3
adj
(
2
A
))
∣
, then
∣
A
∣
2
is equal to :
659
161
JEE Main
JEE Main 2022
Matrices
Report Error
A
6
6
9%
B
2
12
23%
C
2
6
57%
D
1
11%
Solution:
∣
adj
(
24
A
)
∣
=
∣
adj
3
(
adj
2
A
)
∣
⇒
∣24
a
∣
2
=
(
3
adj
(
2
A
)
)
2
⇒
(
2
4
3
∣
A
∣
)
2
=
(
3
3
∣
adj
(
2
A
)
∣
)
2
=
3
6
(
∣2
A
∣
2
)
2
⇒
2
4
6
∣
A
∣
2
=
(
2
4
3
∣
A
∣
)
2
=
3
6
×
2
12
∣
A
∣
4
⇒
∣
A
∣
2
=
3
6
×
2
12
2
4
6
=
64