Q.
Let a,b,c∈R with a>0 such that the equation ax2+bcx+b3+c3−4abc=0 has non-real roots.
Let P(x)=ax2+bx+c and Q(x)=ax2+cx+b, then
81
105
Complex Numbers and Quadratic Equations
Report Error
Solution:
D<0 ⇒b2c2−4(b3+c3−4abc)a<0 ⇒(b2c2−4ab3)+(16a2bc−4ac3)<0 ⇒b2(c2−4ab)−4ac(c2−4ab)<0 ⇒(b2−4ac)(c2−4ab)<0 ⇒DP(x)⋅DQ(x)<0 ∴ Exactly one of P(x) or Q(x) is positive for all real x.