Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a, b, c ∈ R. If f(x) = ax2 + bx + c is such that a + b + c = 3 and f (x + y) = f (x) + f (y) + xy, ∀ x, y ∈ R, then displaystyle∑10n = 1 f(n) is equal to :
Q. Let
a
,
b
,
c
∈
R
. If
f
(
x
)
=
a
x
2
+
b
x
+
c
is such that
a
+
b
+
c
=
3
and
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
+
x
y
,
∀
x
,
y
∈
R
,
then
n
=
1
∑
10
f
(
n
)
is equal to :
4444
219
JEE Main
JEE Main 2017
Sequences and Series
Report Error
A
165
14%
B
190
21%
C
255
35%
D
330
30%
Solution:
As,
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
+
x
y
Given,
f
(
1
)
=
3
Putting,
x
=
y
=
1
⇒
f
(
2
)
=
2
f
(
1
)
+
1
=
7
Similarly,
x
=
1
,
y
=
2
⇒
f
(
3
)
=
f
(
1
)
+
f
(
2
)
+
2
=
12
Now,
n
=
1
∑
10
f
(
n
)
=
f
(
1
)
+
f
(
2
)
+
f
(
3
)
+
...
+
f
(
10
)
=
3
+
7
+
12
+
18
+
...
=
S
(let)
Now,
S
n
= 3 + 7 + 12 + 18 + ... +
t
n
Again,
S
n
= 3 + 7 + 12 + ... +
t
n
−
1
+
t
n
We ge,
t
n
= 3 + 4 + 5+ ... n terms
=
2
n
(
n
+
5
)
i.e.,
S
n
=
n
=
1
∑
n
t
n
=
2
1
{
∑
n
2
+
5
∑
n
}
=
6
n
(
n
+
1
)
(
n
+
8
)
So,
S
10
=
6
10
×
11
×
18
=
330