Since a,b,c,d are in A.P. ∴b−a=c−b=d−c=D (let common difference) ⇒d=a+3D⇒a−d=−3D and d=b+2D⇒b−d=−2d
Also c=a+2D⇒c−a=2D ∴ Given equation 2(a−b)+k(b−c)2+(c−a)3=2(a−d)+(b−d)2+(c−d)3 becomes −2D+kD2+(2D)3=−6D+4D2−D3 ⇒9D2+(k−4)D+4=0
Since D is real ⇒(k−4)2−4(4)(9)≥0 ⇒k2−8k−128≥0⇒(k−16)(k+8)≥0 ∴k∈(−∞,−8]∪[16,∞)
Hence smallest positive value of k=16