Q.
Let a,b,c be the three roots of the equation x3+x2−333x−1002=0 then the value of a3+b3+c3.
240
114
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let t be the root of the given cubic where t can take values a,b,c hence t3+t2−333t−1002=0 or t3=1002+333t−t2∴∑t3=∑1002+333∑t−∑t2=3006+333∑t−[(∑t)2−2∑t1t2] but ∑t=−1;∑t1t2=−333∴3+b3+c3=3006−333−[1+666]=3006−333−667=3006−1000=2006