Q.
Let A and B be two points on the major axis of the ellipse 25x2+16y2=1, which are equidistant from the centre. If C and D are the images of these points in the line mirror y=mx,m=0 then find the maximum area of quadrilateral ACBD.
Image of A(h,0) in the line mirror mx−y=0 mx−h=−1y−0=−2(m2+1mh) x=1+m2h(1−m2),y=m2+12mh ∴C=(1+m2h(1−m2),m2+12mh)
Similarly D=(1+m2−h(1−m2),m2+1−2mh) AC=(h−1+m2h(1−m2))2+(1+m2)24m2h2=(1+m2)24m4h2+(1+m2)24m2h2=(1+m2)2mh1+m2 AD=(h+1+m2h(1−m2))2+(1+m2)24m2h2=(1+m2)24h2+(1+m2)24m2h2=(1+m2)2h1+m2 ∴ Area =AC⋅AD=(1+m2)24mh2(1+m2)=m+m14h2
Area max=24×25=50