Q.
Let ' a ' and ' b ' be positive integers. If the value of xyz is 215 or 518 according as the series a,x,y,z,b is arithmetic progression or harmonic progression, then compute the value of (a2+b2).
If a,x,y,z,b are in A.P., then b=5th term =a+4d
( d= common difference) ⇒d=4b−a ∴xyz=(a+d)(a+2d)(a+3d)=215 ⇒(4b+3a)(42a+2b)(4a+3b)=215 ⇒(b+3a)(a+b)(a+3b)=(55)(16)....(1)
Again, if a, x,y,z,b are in H.P., then common difference of the corresponding A.P. is 41(b1−a1)
i.e., 4ab(a−b) ∴x1=a1+4ab(a−b)⇒x=a+3b4ab y1=a1+4ab2(a−b)⇒y=2a+2b4ab=a+b2ab and z1=a1+4ab3(a−b)⇒z=3a+b4ab so, xyz=(a+3b4ab)(a+b2ab)(3a+b4ab)=518 (given) ⇒55×1632a3b3=518⇒a3b3=27⇒ab=3⇒a=3 or b=1 ∴(a2+b2)=10