Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A=[a b c d], where a, b, c, d ∈ R. If A-α I is invertible for all α ∈ R, then
Q. Let
A
=
[
a
c
b
d
]
, where
a
,
b
,
c
,
d
∈
R
. If
A
−
α
I
is invertible for all
α
∈
R
, then
77
145
Matrices
Report Error
A
b
c
>
0
B
b
c
=
0
C
b
c
>
min
(
0
,
2
1
a
d
)
D
a
=
0
Solution:
As
A
−
α
I
is invertible for all
α
∈
R
.
det
(
A
−
α
I
)
=
0
∀
α
∈
R
.
⇒
(
a
−
α
)
(
d
−
α
)
−
b
c
=
0
∀
α
∈
R
.
⇒
α
2
−
(
a
+
d
)
α
+
a
d
−
b
c
=
0
∀
α
∈
R
.
Therefore
(
a
+
d
)
2
−
4
(
a
d
−
b
c
)
<
0
⇒
(
a
−
d
)
2
+
4
b
c
<
0
Therefore,
b
c
<
0
.
Also,
a
2
+
d
2
−
2
a
d
+
4
b
c
<
0
⇒
0
≤
a
2
+
d
2
<
2
a
d
−
4
b
c
⇒
b
c
<
2
1
a
d
.
Thus,
b
c
<
min
(
0
,
2
1
a
d
)