Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A1= (x, y):|x| ≤ y2,|x|+2 y ≤ 8 and A2= (x, y):|x|+|y| ≤ k . If 27 (Area .A 1)=5 (Area A 2 ), then k is equal to:
Q. Let
A
1
=
{
(
x
,
y
)
:
∣
x
∣
≤
y
2
,
∣
x
∣
+
2
y
≤
8
}
and
A
2
=
{(
x
,
y
)
:
∣
x
∣
+
∣
y
∣
≤
k
}
. If 27 (Area
A
1
)
=
5
(Area
A
2
), then
k
is equal to:
1471
157
JEE Main
JEE Main 2022
Application of Integrals
Report Error
Answer:
6
Solution:
A
1
=
{
(
x
,
y
)
:
∣
x
∣
≤
y
2
,
∣
x
∣
+
2
y
≤
8
}
and
A
2
=
{(
x
,
y
)
:
∣
x
∣
+
∣
y
∣
≤
k
}
area
(
A
1
)
=
2
[
0
∫
2
y
2
d
y
+
2
∫
4
(
8
−
2
y
)
d
y
]
=
2
[
(
3
y
3
)
0
2
+
(
8
y
−
y
2
)
2
4
]
area
(
A
1
)
=
2
×
3
20
=
3
40
Area
(
A
2
)
=
4
×
2
1
k
2
Area
(
A
2
)
=
2
k
2
Now
27
(
Area
A
1
)
=
5
(
Area
A
2
)
9
×
4
=
k
2
k
=
6