Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a1, a2, a3,... be an A.P, such that (a1+a2+ ldots+ap/a1+a2+a3+ ldots+aq) = (p3/q3) ; p≠ q Then (a6/a21) is equal to:
Q. Let
a
1
,
a
2
,
a
3
,
...
be an
A
.
P
, such that
a
1
+
a
2
+
a
3
+
…
+
a
q
a
1
+
a
2
+
…
+
a
p
=
q
3
p
3
;
p
=
q
Then
a
21
a
6
is equal to:
4720
209
JEE Main
JEE Main 2013
Sequences and Series
Report Error
A
11
41
3%
B
121
31
10%
C
41
11
32%
D
1681
121
55%
Solution:
a
1
+
a
2
+
a
3
+
……
+
a
q
a
1
+
a
2
+
……
+
a
p
=
q
3
p
3
⇒
⇒
2
q
[
2
a
+
(
q
−
1
)
d
]
2
p
[
2
a
+
(
p
−
1
)
d
]
=
q
3
p
2
a
+
(
q
−
1
)
d
2
a
+
(
p
−
1
)
d
=
q
2
p
2
putting
p
=
11
and
q
=
41
⇒
2
a
+
40
d
2
a
+
10
d
=
(
41
11
)
2
⇒
a
+
2
d
a
+
5
d
=
1681
121
⇒
a
21
a
6
=
1681
121