Q.
Let A(1,2),B(4,−4),C(2,22) be points on the parabola y2=4x. If α and β respectively represent the area of △ABC and the area of the triangle formed by the tangents at A,B,C to the above parabola, then αβ=
We have, y2=4x ⇒2ydxdy=4 ⇒dxdy=y2
At A(1,2) dxdy∣∣(1,2)=22=1 ∴ Tangent is given by y−2=1(x−1) y−2=x−1 y=x+1…… (i)
At B(4,−4) (dxdy)(4,−4)=−42=−21 ∴ Tangent is given by y+4=2−1(x−4) 2y+8=−x+4 x+2y+4=0……(ii)
At C(2,22) dxdy∣∣(2,22)=222=21 ∴ Tangent is given by y−22=21(x−2) ⇒2y−4=x−2 ⇒x−2y+2=0.......(iii)
Let P,Q,R the vertices of triangle formed by tangents (i), (ii), (iii).
On solving Eqs. (i), (ii) and (iii), we get P(−2,−1),Q(−22,2−2) and R(2,2+1)
Now, ar(ΔABC)=21∣∣1422−422111∣∣ =21[1(−4−22)−2(4−2)+1(82+8)] =21[−4−22−4+82+8]=32 sq unit
and ar (ΔPQR)=21∣∣−2−222−12−22+1111∣∣ =21[−2[2−2−2−1]+1[−22−2]+1[−4−22−2+22]] =21[6−32−6]=2−32 =232sq [area cannot be negative] ∴α=32 and β=232 ∴αβ=32×232=9