Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let 3 cos θ+5 cos 2 θ+7 cos 3 θ+ ldots ∞=-(1/2), where | cos θ|<1 . The value of (1+2 sin 2 (θ/2))2 is equal to
Q. Let
3
cos
θ
+
5
cos
2
θ
+
7
cos
3
θ
+
…
∞
=
−
2
1
,
where
∣
cos
θ
∣
<
1.
The value of
(
1
+
2
sin
2
2
θ
)
2
is equal to___
1618
198
Sequences and Series
Report Error
Answer:
5
Solution:
S
=
3
cos
θ
+
5
cos
2
θ
+
7
cos
3
θ
+
⋯
∞
⇒
cos
θS
=
3
cos
2
θ
+
5
cos
3
θ
+
⋯
∞
So,
(
1
−
cos
θ
)
S
=
3
cos
θ
+
2
[
cos
2
θ
+
cos
3
θ
+
…
∞
]
⇒
(
1
−
cos
θ
)
S
=
3
cos
θ
+
1
−
c
o
s
θ
2
c
o
s
2
θ
⇒
(
1
−
cos
θ
)
2
(
2
−
1
)
=
3
cos
θ
(
1
−
cos
θ
)
+
2
cos
2
θ
⇒
−
cos
2
θ
+
2
cos
θ
−
1
=
6
cos
θ
−
6
cos
2
θ
+
4
cos
2
θ
⇒
cos
2
θ
−
4
cos
θ
−
1
=
0
⇒
cos
θ
=
2
±
5
⇒
cos
θ
=
2
−
5
(
1
+
2
sin
2
2
θ
)
2
=
(
1
+
1
−
cos
θ
)
2
=
(
2
−
(
2
−
5
)
)
2
=
5