Q.
Ler f(x) be defined as f(x)=⎩⎨⎧(cosx−sinx)cosecx,a,ae2/x+be3/xe1/x+e2/x+e3/x,−2π<x<0x=00<x<2π
If f(x) is continuous at x=0, then (a,b) =
1529
215
Continuity and Differentiability
Report Error
Solution:
Let us check continuity at x=0 LHL=x→0−limf(x)=h→0lim(0−h) =h→0lim(cosh+sinh)−cosech(1∞ form ) =exp{h→0lim(cosh+sinh−1)×(−cosech)} =exp{h→0lim(−2sin22h+2sin2hcos2h)×2sin2hcos2h−1} =exp{limh→0(cos2hsin2h−cos2h)}=e−1 RHL=x→0+limf(x)=h→0limf(0+h) =h→0limae2/h+be3/he1/h+e2/h+e3/h =h→0lim(e3/h{ae−1/h+b})e3/h(e−2/h+e−1/h+1)=b1[∵h→0lime−1/h=0] ∴ For continuity at x=0 e−1=a=b−1 ⇒a=e1,b=e