Q.
Lef f(x) be a positive, continuous and differentiable function on the interval (a,b). If limx→a+f(x)=1 and
limx→b−f(x)=31/4. Also f′(x)≥f3(x)+f(x)1 then
f′(x)≥f3(x)+f(x)1 or f′(x)⋅f(x)≥1+f4(x)
or 1+f4(x)f(x)⋅f′(x)≥1
Integrating with respect to x,
from x=a to x=b 21(tan−1(f2(x)))ab≥b−a
or (b−a)≤21{x→b−lim(tan−1(f2(x))} −x→a+lim(tan−1(f2(x))) ⇒b−a≤24π