Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
It is given that f'(a) exists, then displaystyle lim x arrow a (x f(a)-a f(x)/(x-a)) is equal to :
Q. It is given that
f
′
(
a
)
exists, then
x
→
a
lim
(
x
−
a
)
x
f
(
a
)
−
a
f
(
x
)
is equal to :
1354
193
UPSEE
UPSEE 2005
Report Error
A
f
(
a
)
−
a
f
′
(
a
)
B
f
′
(
a
)
C
−
f
′
(
a
)
D
f
(
a
)
+
a
f
′
(
a
)
Solution:
By definition
f
′
(
a
)
=
x
→
a
lim
x
−
a
f
(
x
)
−
f
(
a
)
,
Given
x
→
a
lim
x
−
a
x
f
(
a
)
−
a
f
(
x
)
=
x
→
a
lim
(
x
−
a
)
x
f
(
a
)
−
x
f
(
x
)
+
x
f
(
x
)
−
a
f
(
x
)
=
x
→
a
lim
[
(
x
−
a
)
x
[
f
(
a
)
−
f
(
x
)]
+
(
x
−
a
)
f
(
x
)
(
x
−
a
)
]
=
x
→
a
lim
−
x
−
a
x
[
f
(
x
)
−
f
(
a
)]
+
x
→
a
lim
f
(
x
)
=
−
a
f
′
(
a
)
+
f
(
a
)
=
f
(
a
)
−
a
f
′
(
a
)