Q.
It is given that 2nsinα1,1,2nsinα are in A.P. for some
value of α. Let say for n=1, the α satisfying the above A.P.
is α1, for n=2, the value is α2 and so on. If S=i=1∑∞sinαi,
then the value of S is
2=2nsinα+2nsinα1 ⇒2⋅2nsinα=(2nsinα)2+1 ⇒(2nsinα−1)2=0 ⇒sinα=2n1
for n=1,sinα1=21; for n=2,sinα2=41;
for n=3,sinα3=81 S=21+41+81+… upto ∞ =1−2121=2121=1