Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ (x3/x+1) dx is equal to
Q.
∫
x
+
1
x
3
d
x
is equal to
1985
227
Integrals
Report Error
A
x
+
2
x
2
+
3
x
3
−
l
o
g
∣
1
−
x
∣
+
C
19%
B
x
+
2
x
2
−
3
x
3
−
l
o
g
∣
1
−
x
∣
+
C
23%
C
x
−
2
x
2
−
3
x
3
−
l
o
g
∣
1
+
x
∣
+
C
22%
D
x
−
2
x
2
+
3
x
3
−
l
o
g
∣
1
+
x
∣
+
C
35%
Solution:
We have,
I
=
∫
x
+
1
x
3
d
x
=
∫
x
+
1
x
3
−
1
+
1
d
x
=
∫
(
x
+
1
(
x
+
1
)
(
x
2
+
1
−
x
)
−
x
+
1
1
)
d
x
=
∫
(
x
2
+
1
−
x
)
d
x
−
∫
x
+
1
d
x
=
3
x
3
+
x
−
2
x
2
−
l
o
g
∣
x
+
1
∣
+
C