Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ (x2/(x sin x+cos x)2) dx is equal to
Q.
∫
(
x
s
in
x
+
cos
x
)
2
x
2
d
x
is equal to
1953
202
MHT CET
MHT CET 2011
Report Error
A
x
s
in
x
+
cos
x
s
in
x
+
cos
x
+
C
B
x
s
in
x
+
cos
x
x
s
in
x
−
cos
x
+
C
C
x
s
in
x
+
cos
x
s
in
x
−
cos
x
+
C
D
None of the above
Solution:
Since,
d
x
d
(
x
sin
x
+
cos
x
)
=
x
cos
x
∴
I
=
∫
(
x
s
i
n
x
+
c
o
s
x
)
2
x
2
d
x
=
∫
c
o
s
x
x
⋅
(
x
s
i
n
x
+
c
o
s
x
)
2
x
c
o
s
x
d
x
=
c
o
s
x
x
⋅
(
x
s
i
n
x
+
c
o
s
x
−
1
)
−
∫
c
o
s
2
x
c
o
s
x
−
x
(
−
s
i
n
x
)
⋅
(
x
s
i
n
x
+
c
o
s
x
)
−
1
d
x
=
c
o
s
x
(
x
s
i
n
x
+
c
o
s
x
)
−
x
+
∫
sec
2
d
x
=
c
o
s
x
(
x
s
i
n
x
+
c
o
s
x
)
−
x
+
tan
x
+
C
=
c
o
s
x
(
x
s
i
n
x
+
c
o
s
x
)
−
x
+
s
i
n
x
(
x
s
i
n
x
+
c
o
s
x
)
+
C
=
c
o
s
x
(
x
s
i
n
x
+
c
o
s
x
)
−
x
c
o
s
2
x
+
s
i
n
x
⋅
c
o
s
x
+
C
=
(
c
o
s
x
+
x
s
i
n
x
s
i
n
x
−
x
c
o
s
x
)
+
C