Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ (x + 2/(x2 + 3x + 3) √x+1)dx is equal to
Q.
∫
(
x
2
+
3
x
+
3
)
x
+
1
x
+
2
d
x
is equal to
1277
199
UPSEE
UPSEE 2014
Report Error
A
3
2
tan
−
1
(
x
+
1
x
)
+
C
B
3
2
tan
−
1
[
3
(
x
+
1
)
x
]
+
C
C
3
2
tan
−
1
[
(
x
+
1
)
2
x
]
+
C
D
None of the above
Solution:
Let
I
=
∫
(
x
2
+
3
x
+
3
)
x
+
1
x
+
2
d
x
Put
x
+
1
=
t
2
⇒
d
x
=
2
t
d
t
∴
1
=
∫
{
(
t
2
−
1
)
2
+
(
t
2
−
1
)
+
3
}
t
2
(
t
2
−
1
)
+
2
⋅
(
2
t
)
d
t
=
2
∫
t
4
+
t
2
+
1
t
2
+
1
d
t
=
2
∫
t
2
+
1
+
t
2
1
1
+
t
2
1
d
t
=
2
∫
(
t
−
t
1
)
2
+
(
3
)
2
1
+
t
2
1
d
t
=
2
∫
u
2
+
(
3
)
2
d
u
(where,
u
=
t
−
t
1
⇒
d
u
=
1
+
t
2
1
d
t
)
=
3
2
tan
−
1
(
3
u
)
+
C
∴
I
=
3
2
tan
−
1
(
3
t
t
2
−
1
)
+
C
=
3
2
tan
−
1
[
3
(
x
+
1
)
x
]
+
C