Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ ( sin 2 x ⋅ sec 2 x+2 tan x ⋅ sin -1 x ⋅ √1-x2/√1-x2(1+ tan 2 x)) d x=
Q.
∫
1
−
x
2
(
1
+
t
a
n
2
x
)
s
i
n
2
x
⋅
s
e
c
2
x
+
2
t
a
n
x
⋅
s
i
n
−
1
x
⋅
1
−
x
2
d
x
=
172
175
Integrals
Report Error
A
(
cos
2
x
)
(
sin
−
1
x
)
+
C
B
(
sin
2
x
)
(
sin
−
1
x
)
+
C
C
(
sec
2
x
)
(
cos
−
1
x
)
+
C
D
(
sec
2
x
)
(
tan
−
1
x
)
+
C
Solution:
∫
1
−
x
2
(
1
+
t
a
n
2
x
)
s
i
n
2
x
⋅
s
e
c
2
x
+
2
t
a
n
x
⋅
s
i
n
−
1
x
⋅
1
−
x
2
d
x
=
∫
(
1
−
x
2
s
i
n
2
x
+
s
e
c
2
x
2
t
a
n
x
⋅
s
i
n
−
1
x
)
d
x
=
∫
1
−
x
2
s
i
n
2
x
d
x
+
∫
2
sin
x
cos
x
sin
−
1
x
d
x
=
sin
2
x
sin
−
1
x
−
∫
2
sin
x
cos
x
sin
−
1
x
d
x
+
∫
2
sin
x
cos
x
sin
−
1
x
d
x
+
C
=
sin
2
x
sin
−
1
x
+
C