Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ sin 2 x . log cos x d x is equal to
Q.
∫
sin
2
x
.
lo
g
cos
x
d
x
is equal to
1338
182
Integrals
Report Error
A
cos
2
x
(
2
1
+
lo
g
cos
x
)
+
k
B
cos
2
x
⋅
lo
g
cos
x
+
k
C
cos
2
x
(
2
1
−
lo
g
cos
x
)
+
k
D
None of these
Solution:
I
=
∫
2
sin
x
⋅
cos
x
⋅
lo
g
cos
x
d
x
put
lo
g
cos
x
=
t
∴
−
c
o
s
x
s
i
n
x
d
x
=
d
t
I
=
∫
2
sin
x
⋅
cos
x
⋅
t
−
s
i
n
x
c
o
s
x
d
t
=
−
2
∫
cos
2
x
.
t
d
t
=
−
2
∫
t
e
2
t
d
t
=
−
2
[
t
⋅
2
e
2
t
−
∫
2
e
2
t
⋅
d
t
]
=
−
t
e
2
t
+
2
1
e
2
t
+
k
=
e
2
t
(
2
1
−
t
)
+
k
=
cos
2
x
{
2
1
−
lo
g
cos
x
}
+
k