Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ (log x-1/1+(log x)2+1) 2 dx is equal to
Q.
∫
{
1
+
(
l
o
g
x
)
2
+
1
l
o
g
x
−
1
}
2
dx is equal to
1256
204
Integrals
Report Error
A
(
l
o
g
x
)
2
+
1
l
o
g
x
+
c
24%
B
x
2
+
1
x
+
c
22%
C
1
+
x
2
x
e
x
+
c
24%
D
(
l
o
g
x
)
2
+
1
x
+
c
30%
Solution:
∫
(
1
+
(
l
o
g
x
)
2
)
2
(
l
o
g
x
−
1
)
2
d
x
=
∫
[
(
1
+
(
l
o
g
x
)
)
2
1
−
(
1
+
(
l
o
g
x
)
2
)
2
2
l
o
g
x
]
d
x
=
∫
[
1
+
t
2
e
t
−
(
1
+
t
2
)
2
2
t
e
t
]
d
t
( Putting
l
o
g
x
=
t
⇒
d
x
=
e
t
d
t
)
=
∫
e
t
[
1
+
t
2
1
−
(
1
+
t
2
)
2
2
t
]
d
t
=
1
+
t
2
e
t
+
c
=
1
+
(
l
o
g
x
)
2
x
+
c
(Resubstituting
t
=
l
o
g
x
)