Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits∞0 [(2/ex)]dx is equal to ([x] = greatest integer le x)
Q.
0
∫
∞
[
e
x
2
]
d
x
is equal to
(
[
x
]
=
g
re
a
t
es
t
in
t
e
g
er
≤
x
)
1194
260
Integrals
Report Error
A
l
o
g
e
2
81%
B
e
2
6%
C
0
0%
D
e
2
12%
Solution:
We have, if
e
x
>
2
,
e
x
2
<
1
. Also
e
x
2
>
0
⇒
0
<
e
x
2
<
1
∴
I
f
x
>
l
o
g
e
2
,
[
e
x
2
]
=
0
Again if
0
<
x
<
l
o
g
e
2
then
1
<
e
x
<
2
⇒
1
>
e
x
1
>
2
1
⇒
2
>
e
x
2
>
1
or
1
<
e
x
2
<
2
∴
[
e
x
2
]
=
1
∴
I
=
0
∫
∞
[
e
x
2
]
d
x
+
0
∫
∞
[
2
e
−
x
]
d
x
=
0
∫
l
o
g
2
[
2
e
−
x
]
d
x
+
l
o
g
2
∫
∞
[
2
e
−
x
]
d
x
=
0
∫
l
o
g
2
(
1
)
d
x
+
l
o
g
2
∫
∞
(
0
)
d
x
=
l
o
g
e
2