Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫ limits2- log 33+ log 3 ( log (4+x)/ log (4+x)+ log (9-x)) d x is equal to :
Q.
2
−
l
o
g
3
∫
3
+
l
o
g
3
l
o
g
(
4
+
x
)
+
l
o
g
(
9
−
x
)
l
o
g
(
4
+
x
)
d
x
is equal to :
274
172
Integrals
Report Error
A
cannot be evaluated
B
2
5
C
1
+
2
lo
g
3
D
2
1
+
lo
g
3
Solution:
I
=
2
−
l
o
g
3
∫
3
+
l
o
g
3
l
o
g
(
4
+
x
)
+
l
o
g
(
9
−
x
)
l
o
g
(
4
+
x
)
d
x
....
(1)
using
a
∫
b
f
(
x
)
d
x
=
a
∫
b
f
(
a
+
b
−
x
)
d
x
I
=
2
−
l
o
g
3
∫
3
+
l
o
g
3
l
o
g
(
9
−
x
)
+
l
o
g
(
4
+
x
)
l
o
g
(
9
−
x
)
d
x
.....
(2)
From equation (1) and (2)
2
I
=
2
−
l
o
g
3
∫
3
+
l
o
g
3
d
x
=
1
+
2
lo
g
3
∴
I
=
2
1
+
lo
g
3